Palladium(0)-tetracyanoethylene complexes of diphosphines and a dipyridine with large bite angles, and their crystal structures§

M irko K ranenburg, ${ }^{\text {a }}$ J ohannes G. P. D elis, ${ }^{\text {a }}$ Paul C. J. Kamer, ${ }^{\text {a }}$ Piet W. N. M . van Leeuwen, ${ }^{*, a}$ Kees Vrieze, ${ }^{\text {a }}$ N ora Veldman, ${ }^{\text {b }}$ A nthony L. Spek, $\boldsymbol{t}^{, b}$ Kees G oubitz ${ }^{\prime,}{ }^{\text {c }}$ and J an Fraanje ${ }^{c}$

${ }^{\text {a J J H H . van't H off Research Institute, D epartment of I norganic C hemistry, U niversity of }}$ A msterdam, N ieuwe A chtergracht 166, 1018 W V A msterdam, T he N etherlands
${ }^{\mathrm{b}}$ Bijvoet Center for Biomolecular R esearch, L aboratorium voor K ristal-en Structuurchemie, University U trecht, Padualaan 8, 3584 CH U trecht, The N etherlands
${ }^{\text {c }}$ A msterdam Institute for M olecular Studies, D epartment of Crystallography, U niversity of A msterdam, N ieuwe A chtergracht 166, 1018 W V A msterdam, The N etherlands

Complexes of $\mathrm{Pd}($ tcne) (tcne = tetracyanoethylene) containing bidentate ligands with large bite angles, bis[2(diphenylphosphino)phenyl] ether (${ }^{1}$), 4,6-bis(diphenylphosphino)-10,10-dimethyl-10H dibenzo[b,e][1,4]oxasiline(L^{2}), 4.6-bis(diphenylphosphino)-2,8-dimethylphenoxathiine (L^{3}), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (L^{4}) and trans-5,6-bis(2-pyridyl)bicyclo[2.2.1]hept-2-ene (L^{6}), were prepared and characterised. The compound 4,6-bis(diphenylphosphino)dibenzo[b,d]furan (L5) did not form chelating palladium complexes, owing to its large natural bite angle of 138°. The crystal structures of L^{6}, $\left[\mathrm{PdL}^{1}\right.$ (tcne) $] \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathbf{1},\left[\mathrm{PdL}^{2}\right.$ (tcne) $] \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathbf{2},\left[\mathrm{PdL}^{4}\right.$ (tcne) $] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} 4$ and $\left[\mathrm{PdL}^{6}\right.$ (tcne) $\mathbf{5}$ have been determined. The similarity of electronic effects induced by the free diphosphines was demonstrated by M OPAC calculations. The geometries of the ligands, however, were most accurately predicted by molecular mechanics (M M 2) calculations for the diphosphines, and MNDO for L^{6}. The largest P-Pd-P angle in the zerovalent palladium complexes was found to be 104.6°. A further increase in the natural bite angle of the ligand results in elongation of the $\mathrm{Pd}-\mathrm{P}$ bond length in the complex rather than enlargement of the $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ bite angle. The ligand L^{6} assumed a bite angle of $99.5(2)^{\circ}$ in complex 5 , which is considerably smaller than its calculated value of 117°.

Olefin complexes of zerovalent palladium of the form PdL_{2} (olefin) have not been studied as extensively as the analogous nickel and platinum compounds. In part this may be due to the relative instability of complexes such as $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\right.$ $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$] compared to those of Ni and Pt^{1-3} The importance of zerovalent palladium complexes in various homogeneously catalysed reactions ${ }^{2,4-6}$ justifies a detailed investigation into the structural features of these compounds, especially since the importance of steric and electronic factors in catalyst activity is well recognised.?
The available crystal structures of Pd^{0} (diimine)(olefin) complexes show a very narrow range of $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angles, due to the rigid cis-fixating characteristics of the ligands $2,2^{\prime}$-bipyridine [$\left.\mathrm{N}-\mathrm{Pd}-\mathrm{N} 76.3(4), 76.4(4)^{\circ}\right]^{8}$ and 1,2-bis[2,6-bis(isopropylphenyl) imino]acenaphthene, $\mathrm{C}_{12} \mathrm{H}_{6}\left[\mathrm{~N}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}^{\mathrm{i}}-2,6\right)\right]_{2}-1,2[\mathrm{~N}-\mathrm{Pd}-\mathrm{N}$ $\left.77.78(19)^{\circ}\right]^{9}$ In crystal structures of Pd^{2} (diphosphine)(olefin) complexes the observed P-Pd-P angles vary enormously, depending on steric demands: $115.1(1)^{\circ}$ for $\left[\operatorname{Pd}\left(\mathrm{PM} \mathrm{e}_{3}\right)_{2}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{2}=\mathrm{CC}_{4} \mathrm{M} \mathrm{e}_{4}\right)\right]_{1}^{10} 109.7(2)^{\circ}$ for $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{60}\right)\right]_{1}^{11} 109.3(1)^{\circ}$ for $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)\right],{ }^{12} 106.4^{\circ}$ for $\left[\mathrm{Pd}(\right.$ diop $\left.)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right],{ }^{13} 88.9\left((1)^{\circ}\right.$ for $\left[\operatorname{Pd}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{PCH} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\}\left(\eta^{2}-\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CH}_{2}\right)\right]$, ${ }^{14}$ and 84.78(5) ${ }^{\circ}$ for $[\mathrm{Pd}(\mathrm{dppe})(\mathrm{dba})]^{15}\left(\mathrm{dppe}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right.$, $\mathrm{dba}=$ dibenzylideneacetone). Theoretical studies indicate that the $P-M-P$ angle in the metal fragment will be between 94 and 110°. H ofmann et al. ${ }^{16}$ studied the geometrical characteristics for platinum diphosphine fragments using extended-H ückel calculations. They found an energy minimum for [Pt-
\dagger For correspondence pertaining to crystallographic studies on complexes 1, 2 and 4
\ddagger For correspondence pertaining to crystallographic studies on L^{6} and complex 5.
§ N on-SI units employed: $\mathrm{cal}=4.184 \mathrm{~J}, \mathrm{dyn}=10^{-5} \mathrm{~N}, \mathrm{au} \approx 1.60 \times 10^{-19} \mathrm{C}$.

diop

$\mathrm{C}_{12} \mathrm{H}_{6}\left[\mathrm{~N}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{I}}-2,6\right)\right]_{2}-1,2$
$\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$] at a P-Pt-P angle of 110°. Sakaki and Ieki ${ }^{17}$ calculated a P-Pt-P angle of 103° for $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{Si}_{2} \mathrm{H}_{4}\right)\right]$ and $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{SiH}_{2} \mathrm{CH}_{2}\right)\right]$, and 107° for $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$. These calculations were performed at the ab initio level. A recent quasirelativistic density-functional study by Ziegler and co-workers ${ }^{18}$ reports calculated bite angles of 110.8-117.1 ${ }^{\circ}$ for $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right], 109.0-109.9^{\circ}$ for $\left[\mathrm{Ni}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ and 104.9-110.6 for $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$, depending on whether or not relativistic effects are taken into account. These theoretical calculations focused mainly on the olefinic part of the complex and paid little attention to the $\mathrm{P}-\mathrm{M}-\mathrm{P}$ angle
Recently, we developed a new group of diphosphines $L^{1}-L^{5}$ designed to enforce large bite angles (i.e. larger than 90°), which are, unlike traditional diphosphines such as 1,2-bis(diphenylphosphino)ethane (dppe), ideally suitable to stabilise the bite angles found in trigonal and tetrahedral geometries. ${ }^{19}$ These compounds are based on heterocyclic xanthene-like aromatics, and by varying the bridge in the 10 position of the backbone we were able to induce variations in the bite angle.
The natural bite angle (β_{n}) and flexibility range were calculated by molecular modelling, using an augmented $\mathrm{MM} 2^{20}$ force field. The natural bite angle is defined as the preferred chelation angle determined only by ligand-backbone con-

L^{1}

L^{4}

L^{2}

L^{3}

L^{6}

$\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]+\mathrm{L}^{6}+$ tcne

5
Scheme 1 (i) $\mathrm{C}_{6} \mathrm{H}_{6}$, room temperature (r.t.); (ii) toluene, r.t.
obtained by either concentrating a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution under a gentle stream of N_{2} or slow diffusion of pentane into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

A ttempts to synthesize [PdL ${ }^{5}$ (tcne)] did not yield any characterisable complex. This again indicates that the bite angle of L^{5} ($\beta_{\mathrm{n}}=138^{\circ}$, see Table 4) is too large for successful co-ordination, as was already apparent from its performance in catalytic reactions ${ }^{19,23}$ and attempts to prepare other transition-metal complexes. ${ }^{19,27}$

Electronic influence and geometry of the ligands

The geometry of the diphosphines changes little on coordination to Pd, as can be concluded from comparison of the crystal structure of L ${ }^{4}$ (ref. 19) (see Fig. 7) and that of complex 4 (see Fig. 6). When the calculated structures of L^{1} and L^{2} are compared to those of complexes $\mathbf{1}$ and $\mathbf{2}$, respectively, similar results are obtained. Comparison of chelational properties of different ligands, based on strictly steric arguments such as the cone angle ${ }^{7}$ and the bite angle, is of course only valid when electronic influences are kept constant. Since the Pd(tcne) fragment is the same for all complexes, the only difference that can arise is that from the ligands. We calculated the partial charges in the free phosphines to quantify the possible electronic differences induced by them. These net atomic charges were determined by M OPAC ${ }^{28}$ calculations. Starting geometries for the calculations were that of the crystal structure for L^{4} and the geometry as produced by computational methods for the other diphosphine ligands. The exact input geometry of the molecules proved to be of great importance for the results of the calculations. When the partial charges for L^{4} as calculated for the X-ray geometry and the M M 2 geometry are compared significant differences are observed. The results obtained for different compounds are therefore only comparable when the same method is used for the determination of the geometries. Since crystal structures are not available for all the diphosphines, we investigated which method is most accurate in the prediction of the ligand geometry. A s sample ligands L^{4} and L^{6} were used, since these are the only ones of this series for which crystal structures are available
The computational methods tested were molecular mechanics (using the MM2 force field) ${ }^{20}$ and the semiempirical MOPAC-AM 1, ${ }^{29}$ PM 3^{30} and MNDO ${ }^{31}$ methods. The input structures for the geometry optimisation were the crystal structures. The results are presented in Figs. 1 and 2.
The M OPAC calculations of the diphosphine show a large overestimation of the planarity of the backbone compared to the crystal structure. Especially the AM 1 and M NDO calculations, which produce a backbone which is almost planar. The PM 3 calculated structure is somewhat better in that respect, but

P…P $4.046 \AA$

P․P $4.278 \AA$

Fig. 1 Geometry of compound L^{4} as calculated with M M 2, M ND O, PM 3 and AM 1 methods compared to the crystal structure
in this the $\mathrm{P} \ldots \mathrm{P}$ distance is too large [4.278 compared to 4.059(2) \AA in the crystal structure]. The π-stacking interaction between the phenyl rings of the diphenylphosphine moieties is held responsible for the observed bending of the backbone in L^{4}. When this interaction is hindered, as in 4,6-bis\{bi[4-(diethylaminomethyl)phenyl]phosphino \}-9,9-dimethyIxanthene) where the (diphenylphosphino) phenyl groups of L^{4} are substituted with a p-(diethylamino)methyl group, the xanthene backbone is almost flat [a dihedral of $176.7(2) \AA$]. ${ }^{32}$ This planarity of the backbone is also observed in the crystal structure of $10,10-$ dimethylphenoxasiline, the backbone of $L^{2}{ }^{33}$ The ring system in 10,10-dimethylphenoxasiline is almost planar (dihedral angle between the two phenyl rings 175.6°). This planarity is almost the same as that observed in the 9,9-dimethylxanthene backbone L^{7}.
The importance of attractive interactions between π systems is well recognised, ${ }^{34}$ but semiempirical SCF (self-consistent field) techniques have not been very successful in describing these interactions. ${ }^{35,36} \mathrm{~N}$ one of the M OPAC calculations reproduces the π-stacking interaction accurately, ${ }^{37}$ and it can be concluded that an important factor determining the overall geometry of these compounds is not taken into account. M ore advanced methods do offer the possibility to reproduce these interactions. ${ }^{35,38,39}$

The M M 2 calculated structure showed an underestimation of the planarity of the backbone of L^{4} and the resulting geometry is somewhat similar to that in the [PdL4 ${ }^{4}$ (tcne)] complex (see below). The P \ldots P distance calculated for L^{4} is very close to the observed distance $[4.046 \AA$, compared to $4.059(2) \AA$ in the crystal structure], and the orientation of the diphenylphosphine moieties (caused by π-stacking of the phenyl rings) is identical to that of the crystal structure. It can be concluded that the overall geometry is best predicted by M M 2 calculations. This is of course also favoured from a practical point of view, since M M calculations require much less computing time than do MOPAC calculations. In addition, M M can be augmented more easily for use in specific problems (such as natural biteangle calculations).

For compound L^{6} the results of all the calculations are in much better agreement with the crystal structure. In Fig. 2 the calculated structures are superimposed on the crystal structure. The differences are most evident when the orientation of the pyridyl rings is evaluated, but this is not very important since the energy barrier for rotation is very small. M ore importantly, M OPAC, and especially A M 1 and M ND O, gives a more accurate description of the $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles around the sp^{3}-carbon atoms in the norbornene backbone of L^{6} than does M M 2. D eviations in these angles can have large influences on the cal-

Fig. 2 Geometry of compound L^{6} as calculated in Fig. 1 superimposed on the crystal structure

Table 1 N et atomic charges as calculated using M OPAC-PM 3

	Charge (au)	
Compound	$\mathrm{P}(1)$	$\mathrm{P}(2)$
L^{1}	0.7721	0.7262
$\mathrm{~L}^{2}$	0.7242	0.7243
$\mathrm{~L}^{3}$	0.7031	0.7301
$\mathrm{~L}^{4}$	0.7272	0.7272
	0.7522^{*}	0.7522^{*}
$\mathrm{~L}^{5}$	0.7240	0.7283

Geometry as produced by M M 2 calculations. * Geometry as in the crystal structure.
culated bite angle For L^{6}, π-stacking interactions have no influence on the overall geometry and in this case the M OPAC calculations produce better results than does M M 2. It can be concluded that M NDO is the most accurate method for the prediction of the ligand geometry of L^{6}.

The ligand geometry was predicted best by M M 2 calculations for the diphosphines, and therefore the geometries obtained by MM2 were used for calculation of the partial charge on the phosphorus atoms. The calculations (summarised in Table 1) show that these partial charges are nearly the same for the whole range of compounds. It can therefore be concluded that there is little or no electronic influence of the changes we have made in the ligand backbones on the phosphorus-atom donor properties. The absolute values calculated using different M OPAC methods differ significantly, but the results of each method are similar for the range of compounds (0.72 for PM 3, 0.67 for AM 1 and 0.43 for M NDO). The results reported here for the phosphines are those obtained from PM 3 calculations since this method gives more accurate results for molecules containing phosphorus. ${ }^{30,40}$

Crystal structures

The molecular structures and adopted numbering schemes are presented in Figs. 3-6 and 8. Selected bond distances, angles, and torsion angles are compiled in Tables 2, 3 and 6.
The structure of free L^{6} (Fig. 3) shows the norbornene fragment with the two pyridyl groups in a trans position which makes the molecule chiral. The angles around the sp^{3}-carbon atoms $C(4)$ and $C(5)$ are distorted due to the strain induced by

Fig. 3 An ORTEP ${ }^{41}$ representation of the crystal structure of compound L^{6} drawn at the 50% probability level

Fig. 4 An ORTEP representation of the crystal structure of complex 1 drawn at the 50\% probability level. Solvent molecules are omitted for clarity
the norbornene ring. The dihedral angle between the two pyridyl rings is $80.3(1)^{\circ}$.
In the structures of the diphosphine complexes the palladium centres are surrounded by atoms $\mathrm{P}(1), \mathrm{P}(2), \mathrm{C}(37)$ and $\mathrm{C}(38)$. The co-ordination is trigonal planar (Y shaped) as expected for zerovalent complexes of the type ML_{2} (alkene) ($\mathrm{M}=\mathrm{Pd}$ or Pt). ${ }^{42}$ Comparison of the geometry of 4 (Fig. 6) and that of uncomplexed L ${ }^{4}$ (ref. 19) (Fig. 7) shows that the geometry of the ligand has changed very little upon complexation (see below).
The geometries of the diphosphine fragments are determined strongly by $\pi-\pi$ stacking interactions. In complex 1 one of the rings $\left[\mathrm{C}(1)-\mathrm{C}(6)\right.$] of the backbone is nearly parallel to a PPh_{2} phenyl ring $[C(25)-C(30)]$. The angle between the rings is 20.16(16) ${ }^{\text {o }}$, whereas in $\mathbf{2}$ and $\mathbf{4}$ two phenyl rings of the diphenylphosphine moieties [$\mathrm{C}(13)-\mathrm{C}(19)$ and $\mathrm{C}(25)-\mathrm{C}(30)$] are almost parallel, with respective angles between the planes of 19.3(4) and $23.5(3)^{\circ}$.
The alkene bond distances $C(37)-C(38)$ are 1.485(4) \AA in complex 1, 1.508(11) \AA in 2, and 1.475(7) \AA in 4, all longer than that in the free alkene $(1.34 \AA)^{42}$ as a result of the expected back donation from the metal.
The tone fragment is no longer planar, the cyano groups being bent away from the plane which is caused by a rehybridisation towards sp^{3} around the olefinic C atom upon coordination to the palladium. A method to quantify this nonplanarity of the co-ordinated olefin has been introduced by Ittel and Ibers, ${ }^{42}$ involving the angles α and β. The angle α is that between the normals to the planes defined by the substituent groups; β and β^{\prime} are the angles between the normals to the planes between the olefin bond and the aforementioned plane

Fig. 5 An ORTEP representation of the crystal structure of complex 2. Details as in F ig. 4

Fig. 6 An ORTEP representation of the crystal structure of complex 4. D etails as in Fig. 4
normals (Scheme 2). As bending back of the substituents occurs, α becomes larger than 0° and β becomes smaller than 90°. The α and β values for complexes $\mathbf{1 , 2 , 4}$ and $\mathbf{5}$ are presented in Table 4.
The average $\mathrm{Pd}-\mathrm{C}$ (alkene) distance, $2.11 \AA$, is comparable to those found in $\left[\mathrm{Pd}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\}\left(\eta^{2}-\mathrm{CH}_{2}=\mathrm{CH}\right.\right.$ $\left.\left.\mathrm{CH}=\mathrm{CH}_{2}\right)\right]^{14}[2.130(3) \AA]$.

The average $\mathrm{Pd}-\mathrm{P}$ distances are in the same range as those found in other palladium diphosphine systems: $2.332 \AA$ in complexes 1 and 2 , and $2.354 \AA$ in 4 . The probable cause of this slightly longer bond distance in 4 becomes clear when the $\mathrm{P} \ldots \mathrm{P}$ distances and the $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ bite angles are compared (see Table 5). The observed bite angle for $1[P(1)-P d-P(2)$ $\left.101.46(3)^{\circ}\right]$ is significantly smaller than those for 2 [104.28(7)] and $\mathbf{4}\left[104.64(5)^{\circ}\right]$, as expected from our M M calculations. The angles for $\mathbf{2}$ and $\mathbf{4}$ are almost the same, however, which is not expected since the calculated natural bite angles for the ligands are significantly different.

When we compare the observed $P \ldots P$ distances in the crystal structures it is seen that for complex 4 this distance is larger than that for 2. In our model a larger P ...P distance results in a larger P-M -P bite angle (natural bite angle), since the same $\mathrm{P}-\mathrm{Pd}$ bond length is used in all M M calculations and metal valence angles are not taken into account. The larger $\mathrm{P} \ldots \mathrm{P}$

Fig. 7 An ORTEP representation of the crystal structure of uncomplexed L ${ }^{4}$ (ref. 19) drawn at the 30% probability level

Scheme 2 Illustration of angles α, β and β^{\prime}
distance is compensated by an elongation of the $\mathrm{Pd}-\mathrm{P}$ bond in 4. Owing to this elongation the resulting $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ bond angle is only $104.64(5)^{\circ}$. The fact that the Pd-P bond lengths differ so much in structures that are chemically so much alike as $\mathbf{2}$ and $\mathbf{4}$ seems to indicate that the palladium valence angle has reached an upper limit. The ligand L^{4} can chelate succesffully, yielding a stable complex, but only by elongation of the P-Pd bond length. Thus, while L^{4} has a natural bite angle of 109°, the above results show that the $\mathrm{Pd}(\mathrm{tcne})$ fragment clearly prefers, for electronic reasons, a smaller P-Pd-P angle. Previous experiments with either mono- or bi-dentate compounds with smaller, constrained, natural bite angles have never produced evidence for the preferred valence angle in such complexes.
We modelled a hypothetical [PdL ${ }^{\mathbf{5}}$ (tcne)] complex with the observed maximum P-Pd-P angle of 104.64°. For the ligand L^{5} the M M 2 energy is $11.8 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$ higher and the heat of formation calculated using PM 3 is $30.2 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than that for unconstrained L^{5}. We can therefore conclude that the adjustment in geometry for L^{5} in order to support successful coordination costs so much energy that chelation is very unlikely.
We observed that due to electronic effects diphosphines with natural bite angles near 110° adopt much smaller bite angles in $\mathrm{Pd}\left(\right.$ diphosphine)(tcne) complexes. U sing L^{6} we will show that this effect is even larger for dinitrogen ligands. The structure of complex 5 shows the bidentate co-ordination of L^{6} to the trigonal-planar palladium centre with η^{2}-co-ordinated tcne (see Fig. 8).
The bond lengths $\mathrm{Pd}-\mathrm{N}(2)$ of $2.142(5) \AA$ and $\mathrm{Pd}-\mathrm{N}(1)$ of $2.100(4) \AA$ are in the range observed for crystal structures of other $\operatorname{Pd}(N-N)\left(\eta^{2}\right.$-alkene) complexes. ${ }^{9,43,44}$ The α and β values (see above) for 5 are presented in Table 4. The Pd-C (alkene) distances of $2.029(5)$ and $2.016(4) \AA$ are significantly shorter than those in the palladium phosphine complexes $(2.11 \AA$) but comparable with those of other $\operatorname{Pd}(\mathrm{N}-\mathrm{N})\left(\eta^{2}\right.$-alkene) complexes. ${ }^{9,43,44}$ The alkene bond distance $C(18)-C(19)$ of $1.476(7)$ \AA is similar to those in both palladium phosphine and other $\operatorname{Pd}(\mathrm{N}-\mathrm{N})\left(\eta^{2}\right.$-alkene) complexes, while the $\mathrm{N}(1)-\mathrm{Pd}-\mathrm{N}$ (2) bite angle of $99.5(2)^{\circ}$ is significantly larger than those in other $\operatorname{Pd}(N-N)\left(\eta^{2}\right.$-alkene) complexes (ca. $\left.78^{\circ}\right) .{ }^{9}$ The calculated natural bite angle ($\beta_{\mathrm{n}}=117^{\circ}$) for L^{6} is larger than its observed bite angle $\left[\mathrm{N}-\mathrm{Pd}-\mathrm{N} 99.5(2)^{\circ}\right]$. To accommodate this latter bite angle, the Pd atom is not co-ordinated in the plane of the pyridyl groups, but it is bent out of the planes at $11.9(1)^{\circ}$

Fig. 8 An ORTEP representation of the crystal structure of complex 5 drawn at the 50\% probability level
$\left[C(11) \cdots N(1)-P d 164.6(3)\right.$ and $\left.C(16) \cdots N(2)-P d 167.7(3)^{\circ}\right]$. The M M calculations do not a priori take into account a deviation out of the plane and hence the calculated β_{n} is much larger. The heat of formation of the A M 1-optimised geometry of the ligand with a $\mathrm{N} \cdots \mathrm{N}$ distance locked at $3.238 \AA$ (the observed $\mathrm{N}-\mathrm{N}$ distance in the crystal structure) is 3.9 kcal mol^{-1} higher than that of unco-ordinated L^{6}. The difference in M M 2 energy is only $0.5 \mathrm{kcal} \mathrm{mol}^{-1}$ higher. These differences in energy are very small, which indicates that the compound is well capable of adjusting its geometry towards the demands invoked by the palladium centre.

When the out of plane deviation of the Pd is included in the calculations, the natural bite angle decreases to 106.5°. A lthough much smaller than the original β_{n} of 117°, this value is still significantly higher than the observed $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angle, indicating a large strain on this angle. Hence for pyridine ligands the preference for a small valence angle $\left(<100^{\circ}\right)$ is even more pronounced than that found in the phosphine complexes. The compound L^{6} can easily accommodate angles between 105 and 120° and yet the electronic preference of palladium dictates a $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angle of only $99.5(2)^{\circ}$. These observations are in line with molecular orbital calculations, which have shown that stronger σ donors induce smaller $D-M-D$ angles in Y-shaped $\mathrm{D}_{2} \mathrm{M} \mathrm{A}$ complexes ($\mathrm{D}=$ donor, $\mathrm{A}=$ acceptor). ${ }^{45}$
It is difficult to compare the quasi-relativistic densityfunctional calculations by Ziegler and co-workers ${ }^{18}$ on [Pd$\left.\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ with the thus observed 'maximum' bite angle in Pd° (tcne) of 105°. Comparison of the $\mathrm{P}-\mathrm{M}-\mathrm{P}$ angles in the crystal structures of $\left[\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left[\mathrm{P}-\mathrm{Ni}-\mathrm{P} 110.5(2)^{\circ}\right]^{46}$ $\left.\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{C}_{2}(\mathrm{CN})_{4}\right\}\right]\left[\mathrm{P}-\mathrm{Pt}-\mathrm{P} \quad 101.4(3)^{\circ}\right],{ }^{47}\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{Cl}\right)_{4}\right)\right]$ $\left[\mathrm{P}-\mathrm{Pt}-\mathrm{P} 100.6(2)^{\circ}\right]^{48}$ and $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left[\mathrm{P}-\mathrm{Pt}-\mathrm{P} 111.6(1)^{\circ}\right]^{49}$ shows that the influence of the d^{10} metal on the geometry is much less than that of the alkene. Replacing ethene in $[\mathrm{Pt}(\mathrm{P}-$ $\left.\mathrm{Ph}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$] by a more electron-withdrawing alkene such as tcne reduces the bite angle by ca. 10°, whereas replacement of platinum by nickel in [$\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$] causes a decrease in the $\mathrm{P}-\mathrm{M}-\mathrm{P}$ angle of only 1°. Comparison of the $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ angle in 2 [104.28(7)] and $4\left[104.64(5)^{\circ}\right]$ to the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle in $[\mathrm{Pt}(\mathrm{P}-$ $\left.\left.\mathrm{Ph}_{3}\right)_{2}\left\{\mathrm{C}_{2}(\mathrm{CN})_{4}\right\}\right]\left[101.4(3)^{\circ}\right]$, however, shows that the L^{4}-typeligands do induce a significant enlargement of the $\mathrm{P}-\mathrm{M}-\mathrm{P}$ angle.

Conclusion

We started this investigation by designing ligands with large natural bite angles ($110-120^{\circ}$) in order to stabilise trigonal co-ordination. The present results show that for the stabilisation of Pd^{0} bound to the strong acceptor tcne the preferred bite angle is much smaller. Using diphosphines with natural bite

Table 2 Selected bond lengths (\AA) , bond/valence angles (${ }^{\circ}$) and torsion angles (${ }^{\circ}$) for compound L^{6} with estimated standard deviations (es.d.s) in parentheses

$\mathrm{N}(1)-\mathrm{C}(8)$	$1.336(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.255(6)$
$\mathrm{N}(1)-\mathrm{C}(9)$	$1.344(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.551(4)$
$\mathrm{N}(2)-\mathrm{C}(13)$	$1.375(4)$	$\mathrm{C}(4)-\mathrm{C}(8)$	$1.513(4)$
$\mathrm{N}(2)-\mathrm{C}(14)$	$1.375(4)$	$\mathrm{C}(5)-\mathrm{C}(13)$	$1.507(4)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(9)$	$117.8(4)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)$	$115.1(2)$
$\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{C}(14)$	$117.2(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(13)$	$116.4(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$110.7(4)$	$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$91.2(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$107.7(3)$		
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(12)$	$-1.8(4)$		
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{CC}(4)$	$177.7(3)$		
$\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{C}(17)$	$0.3(5)$		
$\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{C}(5)$	$179.7(3)$		
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{N}(1)$	$47.8(3)$		
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(13)$	$103.3(3)$		
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{N}(2)$	$39.4(4)$		

angles ranging from 100 to 109°, the largest $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ angle found is $104.64(5)^{\circ}$. A larger P...P distance in the ligand results in slight elongation of the $\mathrm{Pd}-\mathrm{P}$ bond length rather than enlargement of the $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ bite angle. Co-ordination of the better σ-donating ligand L^{6}, with a β_{n} of 117.5°, reduces the $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ bite angle even further, to $99.5(2)^{\circ}$. To accommodate this small bite angle, the palladium centre is bent out of the planes of the pyridyl rings by 11.9(1) ${ }^{\circ}$.

Experimental

C omputational details

All calculations were performed using CAChe WorkSystem software ${ }^{50}$ on an Apple Power M acintosh 950 equipped with two CACheCXP coprocessors. The molecular mechanics calculations were performed using the M M 2^{20} force field. The blockdiagonal Newton-Raphson method was employed for optimisation. N atural bite angle calculations were performed using a method similar to that described by Casey and Whiteker, ${ }^{21}$ using a Pd-P bond length of $2.332 \AA$ and a Pd-N bond length of $2.120 \AA$.
The flexibility range was calculated by fixing the $\mathrm{L}-\mathrm{Pd}-\mathrm{L}$ angle ($\mathrm{L}=\mathrm{P}$ or N) at a given value, minimising the constrained molecule with molecular mechanics and dynamics. The excess strain energy was calculated by normalising the energy obtained for this strained molecule with that of the structure obtained by the natural bite-angle calculation. This procedure was repeated at intervals of 5°.
The geometry optimisations of the different techniques were compared by minimising the crystal structures of compounds of L^{4} (ref. 19) and L^{6}. Geometry optimisation by M OPACPM 3, ${ }^{30}$ A M $1,{ }^{29,40,51,52}$ and M NDO ${ }^{31,53-55}$ calculations (CACheM OPAC, version 94.10; derived from M OPAC, version 6.00 ${ }^{28}$), were performed using eigenvector following. Partial charges were determined by performing SCF energy calculations using M OPAC. Input structures were those produced by X-ray diffraction analysis for L^{4} and L^{6}, and the geometries as produced by M M 2 calculations for all diphosphines. The gradient was minimised using eigenvector folllowing. A sa base for our calculations on a hypothetical [PdL^{5} (tcne)] complex with the observed maximum $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ angle of 104.64° we took the crystal structure of 4, locked the Pd(tcne) fragment and the P-Pd-P angle, and assigned a bond-stretch force constant of 0 mdyn \AA^{-1} for the P-Pd bond. The structure obtained by this procedure has Pd-P bond lengths of ca. $2.66 \AA$ and a P ...P distance of $4.213 \AA$. To evaluate the strain on the diphosphine ligand caused by this forced chelation we calculated the M M 2 energy and the heat of formation (PM 3). the M M 2 energy for L^{5} optimised with a P \ldots P distance locked at $4.213 \AA$ is 11.8

Table 3 Selected bond lengths (\AA), bond/valence angles $\left({ }^{\circ}\right)$ and torsion angles (${ }^{\circ}$) for complexes $\mathbf{1}, \mathbf{2}$ and $\mathbf{4}$ with e.s.d.s in parentheses

	1	2	4		1	2	4
Pd-P(1)	2.3420 (10)	$2.3375(19)$	$2.3561(13)$	P(2)-C(31)	1.821(3)	1.830(8)	1.828(5)
Pd-P(2)	2.3227(9)	$2.3262(19)$	2.3515(13)	Si/C(45)*-C(6)		1.848(7)	1.527(7)
Pd-C(37)	2.124(4)	2.127(7)	2.110(5)	Si/C (45)*-C (12)		1.870(8)	1.535 (7)
Pd-C(38)	2.092(4)	2.101(7)	2.111(5)	Si/C (45)*-C (43)		1.853(8)	1.528(8)
$\mathrm{P}(1)-\mathrm{C}(2)$	$1.814(4)$	1.827(7)	$1.822(5)$	Si/C (45)*-C (44)		1.840(9)	1.545(6)
$\mathrm{P}(1)-\mathrm{C}(13)$	$1.824(3)$	1.819(8)	$1.815(5)$	O-C(1)	$1.393(4)$	1.391 (9)	1.391 (6)
$\mathrm{P}(1)-\mathrm{C}(19)$	1.807 (3)	1.820 (7)	$1.818(5)$	O-C(7)	1.392 (3)	1.389(9)	$1.380(5)$
$\mathrm{P}(2)-\mathrm{C}(8)$	1.830 (3)	1.826 (7)	$1.824(5)$	$\mathrm{C}(37)-\mathrm{C}(38)$	$1.485(4)$	1.508(11)	1.475(7)
$\mathrm{P}(2)-\mathrm{C}(25)$	1.818(3)	1.816(8)	$1.814(5)$				
$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2)$	101.46(3)	104.28(7)	104.64(5)	C(12)-C (45)/Si*-C(43)		113.4(3)	111.4(4)
$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{C}(37)$	111.97(8)	107.2(2)	105.38(4)	C(12)-C (45)/Si*-C(44)		108.4(4)	107.4(4)
$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{C}(38)$	152.97(8)	148.4(2)	145.57(14)	C(43)-C (45)/Si*-C(44)		112.7(4)	110.4(4)
$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{C}(37)$	145.17(8)	146.8(2)	147.47(15)	$\mathrm{C}(1)-0-\mathrm{C}(7)$	117.2(2)	121.5(5)	113.4(4)
$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{C}(38)$	105.52(8)	105.4(2)	107.23(14)	Pd-C(37)-C (39)	117.4(2)	118.7(5)	109.4(3)
$\mathrm{C}(37)-\mathrm{Pd}-\mathrm{C}(38)$	41.24(11)	41.8(3)	40.92(19)	Pd-C(37)-C (40)	113.0(2)	110.2(5)	118.8(4)
$\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(2)$	117.35(10)	121.9(3)	121.64(12)	Pd-C(37)-C (38)	68.21(19)	68.2(4)	69.6(3)
Pd-P(1)-C(13)	112.75(11)	112.6(3)	110.76(16)	Pd-C(38)-C (37)	70.5(2)	70.1(4)	69.5(3)
$\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(19)$	112.46(12)	109.1(2)	110.42(17)	Pd-C (38)-C (41)	111.0(2)	115.4(5)	119.6(4)
$\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{C}(13)$	105.04(15)	105.3(3)	105.6(2)	Pd-C (38)-C (42)	116.3(2)	111.3(5)	109.1(3)
$\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{C}(19)$	102.97(15)	101.2(3)	101.8(2)	C(39)-C (37)-C (40)	115.0(3)	116.9(7)	115.6(4)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(19)$	105.08(13)	104.9(3)	105.2(2)	C(39)-C (37)-C (38)	118.3(2)	116.3(6)	119.1(5)
$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(8)$	120.03(9)	120.2(3)	117.75(17)	$\mathrm{C}(40)-\mathrm{C}(37)-\mathrm{C}(38)$	116.8(3)	117.5(6)	116.2(4)
$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(25)$	110.29(10)	113.6(3)	114.22(17)	C (37)-C (38)-C (41)	117.9(2)	115.8(6)	117.0(4)
$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(31)$	110.67(11)	109.3(3)	112.25(16)	C(37)-C(38)-C (42)	119.6(2)	118.5(6)	118.9(5)
$\mathrm{C}(8)-\mathrm{P}(2)-\mathrm{C}(25)$	107.95(16)	104.4(3)	105.8(2)	$\mathrm{C}(41)-\mathrm{C}(38)-\mathrm{C}(42)$	113.9(3)	117.0(7)	114.9(5)
$\mathrm{C}(8)-\mathrm{P}(2)-\mathrm{C}(31)$	102.46(14)	103.8(3)	102.5(2)	N (1)-C(39)-C (37)	178.7(4)	178.2(8)	179.5(6)
$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{C}(31)$	104.10(14)	104.1(4)	102.6(2)	N (2)-C(40)-C(37)	178.3(4)	178.5(8)	117.9(6)
C(6)-C (45)/Si*-C (12)		97.9(3)	106.4(4)	N (3)-C(41)-C(38)	178.5(4)	117.6(8)	178.7(5)
C(6)-C (45)/Si*-C (43)		109.5(4)	112.4(4)	N (4)-C(42)-C(38)	179.0(3)	177.7(8)	178.8(6)
C (6)-C(45)/Si*-C (44)		113.8(3)	108.7(4)				
$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(2)$	3.77(11)	62.8(3)	62.96(18)	$\mathrm{C}(38)-\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(31)$	7.81(12)	1.0(4)	5.3(2)
$P(2)-P d-P(1)-C(13)$	-118.48(12)	-63.8(3)	-61.88(16)	$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{C}(37)-\mathrm{C}(38)$	-175.53(12)	-172.4(4)	-171.4(2)
$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(19)$	122.93(10)	-179.9(3)	-178.04(19)	$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{C}(37)-\mathrm{C}(39)$	-63.9(2)	78.6(6)	-56.6(4)
$\mathrm{C}(37)-\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(2)$	-166.24(13)	-127.9(4)	-129.7(2)	$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{C}(37)-\mathrm{C}(40)$	73.5(2)	-60.0(5)	79.2(4)
$\mathrm{C}(37)-\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(13)$	71.51(14)	105.4(3)	105.5(2)	$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{C}(37)-\mathrm{C}(38)$	21.8(2)	-11.7(6)	-14.6(4)
C (37)-Pd-P(1)-C(19)	-47.09(13)	-10.7(3)	-10.7(2)	$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{C}(37)-\mathrm{C}(39)$	133.42(19)	-120.7(5)	100.2(4)
$\mathrm{C}(38)-\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(2)$	-172.73(19)	-137.6(5)	-139.7(3)	$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{C}(37)-\mathrm{C}(40)$	-89.1(3)	100.8(6)	-124.1(4)
$\mathrm{C}(38)-\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(13)$	65.0(2)	95.7(5)	95.4(3)	$\mathrm{C}(38)-\mathrm{Pd}-\mathrm{C}(37)-\mathrm{C}(39)$	111.6(3)	-109.0(7)	114.8(5)
$\mathrm{C}(38)-\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(19)$	-53.6(2)	-20.4(5)	-20.7(3)	$\mathrm{C}(38)-\mathrm{Pd}-\mathrm{C}(37)-\mathrm{C}(40)$	-110.9(3)	112.4(7)	-109.5(5)
$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(8)$	70.49(13)	-70.2(3)	-69.23(19)	$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{C}(38)-\mathrm{C}(37)$	9.1(3)	14.0(6)	14.8(4)
$P(1)-P d-P(2)-C(25)$	-55.88(13)	54.4(3)	55.8(2)	$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{C}(38)-\mathrm{C}(41)$	-104.2(2)	123.8(5)	125.0(3)
$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(31)$	-170.54(10)	170.1(3)	172.12(18)	$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{C}(38)-\mathrm{C}(42)$	123.4(2)	-99.8(6)	-99.7(4)
$\mathrm{C}(37)-\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(8)$	-125.86(18)	-128.8(5)	133.9(3)	$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{C}(38)-\mathrm{C}(37)$	-167.30(13)	173.4(4)	171.8(2)
$\mathrm{C}(37)-\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(25)$	107.77(18)	-106.7(5)	-101.1(3)	$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{C}(38)-\mathrm{C}(41)$	79.32(19)	-76.8(6)	-77.9(4)
$\mathrm{C}(37)-\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(31)$	-6.89(17)	9.1(5)	15.3(3)	$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{C}(38)-\mathrm{C}(42)$	-53.1(2)	59.7(5)	57.3(4)
$\mathrm{C}(38)-\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(8)$	-111.16(15)	120.7(3)	124.0(2)	$\mathrm{C}(37)-\mathrm{Pd}-\mathrm{C}(38)-\mathrm{C}(41)$	-113.4(2)	109.8(7)	110.2(5)
$\mathrm{C}(38)-\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(25)$	122.47(14)	-114.7(3)	-111.0(2)	$\mathrm{C}(37)-\mathrm{Pd}-\mathrm{C}(38)-\mathrm{C}(42)$	114.2(3)	-113.7(7)	-114.6(5)

Table 4 Thenon-planarity of the olefin

Compound	$\alpha /^{\circ}$	$\beta /{ }^{\circ}$	$\beta^{\prime} / /^{\circ}$
$\mathbf{1}$	$55.0(4)$	$61.0(4)$	$64.0(4)$
$\mathbf{2}$	$58.1(9)$	$61.5(9)$	$60.4(9)$
$\mathbf{4}$	$60.9(6)$	$59.1(6)$	$60.0(6)$
$\mathbf{5}$	$59.3(8)$	$60.8(6)$	$59.9(5)$

kcal mol^{-1} higher than unconstrained L^{5}. The PM 3 calculations on the M M 2-optimised structures showed a difference in heat of formation of $30.2 \mathrm{kcal} \mathrm{mol}^{-1}$.

Synthesis

All preparations were carried out under an atmosphere of purified nitrogen using standard Schlenk techniques. Solvents were carefully dried and freshly distilled prior to use. Benzene was distilled from sodium-benzophenone, dichloromethane from CaH_{2}. Tetracyanoethylene, cyclopentadiene and 1,2-dipyridylethene was obtained from Aldrich and used as received. The diphosphines ${ }^{19}$ and $\left[\operatorname{Pd}(\mathrm{dba})_{2}\right]^{56}$ were prepared as published earlier.

Proton (300), ${ }^{13} \mathrm{C}$ (75.5) and ${ }^{31} \mathrm{P}$ N M R spectra (121.5 M Hz , referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) were recorded on a Bruker A M X - 300 spectrometer. N umbering as in the crystal structure was taken for the description of the N M R data for compounds L^{6} and $\mathbf{5}$. Infrared spectra were obtained on a N icolet 510 or a Bio-R ad FTS-7 Fourier-transform spectrometer. M elting-point determinations were performed on a Gallenkamp M F B-595 apparatus. Elemental analyses were performed at Dornis and K olbe, M ülheim a.d. Ruhr, G ermany.
trans-5,6-B is(2-pyridyl)bicyclo[2.2.1]hept-2-ene (L ${ }^{6}$). Aluminium chloride ($1.97 \mathrm{~g}, 14.7 \mathrm{mmol}$), 1,2-bis(2-pyridyl)ethylene $(2.7 \mathrm{~g}, 14.7 \mathrm{mmol}$) and freshly cracked cyclopentadiene (3.0 $\mathrm{cm}^{3}, 36.8 \mathrm{mmol}$) were heated in toluene ($60 \mathrm{~cm}^{3}$) at 383 K . A fter 22 h the reaction mixture was cooled, poured onto ice and a 3 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$ solution ($100 \mathrm{~cm}^{3}$) in water was added. The aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$. The combined organic layers were dried with $\mathrm{M}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residual solid placed on a column with neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. Elution with a mixture of diethyl ether-hexane (1:9) yielded the product, which was recrystallised from hex-

Table 5 Calculated and observed $L-P d-L$ angles $\left({ }^{\circ}\right)$ and $L \cdots L$ distances $(\AA)(L=P$ or $N)$

Complex	Ligand (L)	Calc. $\beta_{\mathrm{n}}{ }^{\text {a }}$	Calc. distance ${ }^{\text {b }}$	A ngle in complex	D istance in complex	D istance in free L
1	L^{1}	100.5	3.582	101.46(3)	3.611	$3.594{ }^{\text {b }}$
2	L^{2}	104.5	3.686	104.28(7)	3.682	$3.899^{\text {b }}$
3	L^{3}	105.4	3.711	-	-	$3.963{ }^{\text {b }}$
4	L^{4}	108.8	3.793	104.64(5)	3.726	$4.059(2){ }^{19}$
	L^{5}	137.8	4.392	-	-	$5.401^{\text {b }}$
5	L^{6}	117.5	c	99.5(2)	3.238(6)	c

${ }^{\text {a }}$ See text. ${ }^{\text {b }}$ Calculated by M M 2. ${ }^{\text {c }}$ D epends on the orientation of the pyridyl rings.

Table 6 Selected bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ for complex $\mathbf{5}$ with e.s.d.s in parentheses

$\mathrm{Pd}-\mathrm{N}(1)$	$2.100(4)$	$N(21)-\mathrm{C}$		1.133(8)	$\mathrm{N}(1)-\mathrm{C}(9)$	1.357(6)	$\mathrm{C}(18)-\mathrm{C}(20)$	1.453(7)
Pd-N (2)	2.142(5)	N (22)-C(2)		1.151(8)	$\mathrm{N}(2)-\mathrm{C}(13)$	1.359(7)	$\mathrm{C}(18)-\mathrm{C}(21)$	1.452(8)
$\mathrm{Pd}-\mathrm{C}(18)$	2.029(5)	N (23)-C(23)		1.144 (8)	$\mathrm{N}(2)-\mathrm{C}(14)$	1.348(7)	C(19)-C (22)	$1.435(7)$
$\mathrm{Pd}-\mathrm{C}(19)$	2.062(5)	$\mathrm{C}(1)-\mathrm{C}(2)$		$1.352(9)$	N (20)-C(20)	1.130(9)	$\mathrm{C}(19)-\mathrm{C}(23)$	1.446(8)
$\mathrm{N}(1)-\mathrm{C}(8)$	1.345(7)	C(18)-C		1.476(7)				
$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{N}(2)$	99.49(15)	C(13)-C(C(16)	120.5(5)	$\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}(9)$	118.3(3)	Pd-C(19)-C (18)	67.7(3)
$N(1)-\mathrm{Pd}-\mathrm{C}(18)$	107.2(2)	Pd-C(18)		70.0(3)	$\mathrm{Pd}-\mathrm{N}(2)-\mathrm{C}(13)$	128.6(3)	Pd-C(19)-C(22)	115.3(4)
$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{C}(19)$	149.4(2)	Pd-C(18)	(2)	115.7(3)	$\mathrm{Pd}-\mathrm{N}(2)-\mathrm{C}(14)$	112.2(3)	Pd-C(19)-C(23)	114.9(3)
N (2)-Pd-C(18)	153.3(2)	Pd-C(18)		113.6(4)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	107.9(6)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(22)$	119.8(5)
N (2)-Pd-C(19)	111.1(2)	C(19)-C	C(20)	117.5(5)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	106.2(6)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(23)$	117.4(4)
$\mathrm{C}(18)-\mathrm{Pd}-\mathrm{C}(19)$	42.3(2)	C(19)-C(C(21)	118.6(4)	$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	94.0(4)	$\mathrm{C}(22)-\mathrm{C}(19)-\mathrm{C}(23)$	113.9(4)
$\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}(8)$	122.4(3)	C(20)-C	C(21)	114.1(4)				
	N (2)-P	(1)-C(8)			$\mathrm{C}(19)-\mathrm{Pd}-$	- C (21)	113.4(4)	
	$\mathrm{N}(2)-\mathrm{P}$	(1)-C(9)	-130		$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{C}$	C (18)	4.4(5)	
	$\mathrm{C}(18)$	(1)-C(8)	-116		$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{C}$	C(22)	118.0(4)	
	C(18)	(1)-C(9)			$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{C}$	C(23)	-106.6(4)	
	C(19)	(1)-C(8)	-119		N(2)-Pd-C	C(18)	-176.7(3)	
	C(19)	(1)-C(9)			N(2)-Pd-C	C(22)	-63.2(4)	
	N (1)-P	(2)-C(13)	-38		$\mathrm{N}(2)-\mathrm{Pd}-\mathrm{C}$	C(23)	72.3(4)	
	$\mathrm{N}(1)-$	(2)-C(14)			$\mathrm{C}(18)-\mathrm{Pd}-$	- C (22)	113.6(5)	
	$\mathrm{C}(18)$	(2)-C(13)			$\mathrm{C}(18)-\mathrm{Pd}-\mathrm{C}$	-C(23)	-111.0(5)	
	C(18)	(2)-C(14)			$\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}$	(4)	-16.9(6)	
	C(19)	(2)-C(13)			$\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}$	(12)	164.8(4)	
	C(19)	(2)-C (14)	-27		$\mathrm{Pd}-\mathrm{N}(2)-\mathrm{C}$	C(5)	21.9(7)	
	N (1)-P	(18)-C (19)	-177		$\mathrm{Pd}-\mathrm{N}(2)-\mathrm{C}$	C(17)	-164.9(4)	
	$\mathrm{N}(1)-$	(18)-C (20)			$\mathrm{C}(14)-\mathrm{N}$ (2)	3)-C(5)	-169.2(5)	
	N (1)-P	(18)-C (21)	-64		$\mathrm{C}(14)-\mathrm{N}$ (2)	$3)-C$ (17)	4.1(8)	
	N (2)-P	(18)-C (19)			$\mathrm{Pd}-\mathrm{N}$ (2)-C	C(15)	167.0(5)	
	N (2)-P	(18)-C (20)	-105		$\mathrm{C}(13)-\mathrm{N}$ (2)	4)-C(15)	-3.7(8)	
	$\mathrm{N}(2)-$	(18)-C (21)	120		$\mathrm{C}(8)-\mathrm{N}$ (4)	- (13)	108.7(5)	
	C (19)	(18)-C (20)	-111					

anes at 233 K. Y ield: 1.05 g ($4.23 \mathrm{mmol}, 28.6 \%$). Crystals suitable for X-ray diffraction were grown from a solution of the product in pentane at $243 \mathrm{~K} . \mathrm{N} \mathrm{M} \mathrm{R} \mathrm{(} \mathrm{CDCl}_{3}$): $\delta{ }^{1} \mathrm{H}, 8.53,8.46$ $\left[\mathrm{dd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=4.8,{ }^{4} \mathrm{~J}=1.7, \mathrm{H}(9), \mathrm{H}(14)\right], 7.06-6.99[\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}(10), \mathrm{H}(15)], 7.53,7.49[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(11), \mathrm{H}(16)], 7.28,7.18$ [d, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}=7.9, \mathrm{H}(12), \mathrm{H}(17)\right], 6.41$ [dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=5.6,3.1, \mathrm{H}(1)$], 5.98 [dd, $\left.1 \mathrm{H},{ }^{3} \mathrm{~J}=5.6,2.7, \mathrm{H}(2)\right], 4.09\left[\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=5.1,3.6\right.$, $\mathrm{H}(4)], 3.39\left[\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=5.3,3.7, \mathrm{H}(5)\right], 3.36[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(3)], 3.07$ $[\mathrm{s}, 1 \mathrm{H}, \mathrm{H}(6)], 2.17\left[\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.3, \mathrm{H}(7)\right], 1.55\left[\mathrm{~d}, 1 \mathrm{H},{ }^{3}\right]=8.3$ $\mathrm{Hz}, \mathrm{H}(7)] ;{ }^{13} \mathrm{C}, \delta 164.5,163.9$ [C(8), C(13)], 149.5, 149.1 [C(9), C(14)], 138.3, 136.6 [C(11), C(16)], 136.2, 136.0 [C(1), C(2)], 123.8, 122.9 [C(12), C(17)], 121.5, 121.4 [C(10), C(15)], 52.9, 52.4, 50.7, 49.0 [C(3)-C(6)], 47.7 [C(7)]. (Found: C, 82.25; H, $6.45 ; \mathrm{N}, 11.35$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2}$: $\left.\mathrm{C}, 82.2 ; \mathrm{H}, 6.5 ; \mathrm{N}, 11.3 \%\right)$.
[PdL ${ }^{1}$ (tcne)] 1. The complex $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right] \quad(0.200 \mathrm{~g}, 0.348$ mmol), tetracyanoethylene ($0.049 \mathrm{~g}, 0.383 \mathrm{mmol}$) and L^{1} (0.206 $\mathrm{g}, 0.383 \mathrm{mmol}$) were dissolved in benzene $\left(40 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred for 16 h during which a yellow precipitate formed. The reaction mixture was decanted and washed with ether until the washings were colourless. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered over paper (in air) to remove metallic palladium. The solvent was removed in vacuo. Y ield of yellow powder: 0.198 g ($0.251 \mathrm{mmol}, 72 \%$). C rystals suitable for X -ray diffraction were grown by leading a gentle stream of N_{2}
through a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. N M R (CDCl_{3}): ${ }^{1} \mathrm{H}, \delta 6-8$ (aryl); ${ }^{31} \mathrm{p}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 14.49$. IR $\left(v_{\mathrm{CN}}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2219 \mathrm{~cm}^{-1}$. M.p. $>573 \mathrm{~K}$ (decomposes, darkens upon heating)
[PdL ${ }^{2}$ (tcne)] 2. This compound was prepared by a procedure similar to that described for $\mathbf{1}$ using $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](0.200 \mathrm{~g}, 0.348$ $\mathrm{mmol})$ tcne ($0.049 \mathrm{~g}, 0.383 \mathrm{mmol}$) and $\mathrm{L}^{2}(0.228 \mathrm{~g}, 0.383 \mathrm{mmol})$. Y ield of yellow powder: $0.252 \mathrm{~g}(0.299 \mathrm{mmol}, 86 \%)$. Crystals suitable for X -ray diffraction were grown by leading a gentle stream of N_{2} through a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. NM R (CDCl_{3}): ${ }^{1 \mathrm{H}}$, $\delta 0.642$ (br s, $6 \mathrm{H}, \mathrm{CH}_{3}$), $6.85(2 \mathrm{H}$, aryl), 7.16-7.37 (22 H , aryl) and 7.771 (apparent br d, 2 H); ${ }^{31 \mathrm{P}}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 7.17$. IR (v_{CN}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $2219 \mathrm{~cm}^{-1}$. M. .p. $>573 \mathrm{~K}$ (decomposes, darkens upon heating).
[PdL^{3} (tcne)] 3. This compound was prepared by a procedure similar to that described for $\mathbf{1}$ using $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](0.200 \mathrm{~g}, 0.348$ $\mathrm{mmol})$, tcne $(0.049 \mathrm{~g}, 0.383 \mathrm{mmol})$ and $\mathrm{L}^{3}(0.228 \mathrm{~g}, 0.383$ $\mathrm{mmol})$. Y ield of yellow powder: $0.256 \mathrm{~g}(0.303 \mathrm{mmol}, 87 \%)$. N M R (CDCl_{3}): ${ }^{1} \mathrm{H}, \delta 2.17\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 6.36(\mathrm{~m}, 2 \mathrm{H})$ and $7.22-7.42$ (aryl); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 7.86$. IR ($\left.\mathrm{v}_{\mathrm{cN}}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2219 \mathrm{~cm}^{-1}$. M.p. $>573 \mathrm{~K}$ (decomposes, darkens upon heating).
[PdL ${ }^{4}$ (tcne)] 4. This compound was prepared by a procedure similar to that described for $\mathbf{1}$ using $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](0.250 \mathrm{~g}, 0.435$

Table 7 Crystal and refinement data for compounds $L^{6}, \mathbf{1}, \mathbf{2 , 4}$ and $\mathbf{5}$

	L^{6}	1	2	4	5
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2}$	$\begin{aligned} & \mathrm{C}_{42} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{OP} 2 \mathrm{Pd} \cdot 2.5- \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{44} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{OP}_{2} \mathrm{PdSi} \cdot 4- \\ & \mathrm{CH}_{2} \mathrm{C}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{45} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{OP}_{2} \mathrm{Pd} \cdot 2- \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{Pd}$
M	248.33	985.41	1168.94	983.01	482.84
Crystal system	Triclinic	Triclinic	M onoclinic	Triclinic	M onoclinic
Space group	P 1 (no. 2)	P1 (no. 2)	P $21 / \mathrm{c}$ ($\mathrm{no.14)}$	Pī (no. 2)	P $2_{1} / \mathrm{C}$ (no. 14)
a/Å	8.3899(8)	12.1157(14)	12.7587(9)	11.8514(7)	9.1090
b/Å	8.9889(9)	13.2623(10)	37.326(2)	12.0742(7)	13.4340
c/Å	9.5220(1)	14.4684(13)	10.9225(9)	18.0974(10)	17.0910
$\alpha /{ }^{\circ}$	86.82(1)	79.440(7)		94.757(5)	
$\beta /{ }^{\circ}$	78.04(1)	72.059(9)	100.394(4)	105.937(5)	104.30(2)
$\gamma /{ }^{\circ}$	70.53(1)	75.588(9)		116.033(4)	
U / A^{3}	662.3(2)	2127.8(4)	5116.3(6)	2174.6(2)	2026.63
Z	2	2	4	2	4
$\mathrm{D}_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.245	1.538	1.518	1.501	1.582
F (000)	264	994	2360	996	968
μ / cm^{-1}	5.35 (Cu-K α)	8.6 (M o-K α)	9.1 ($\mathrm{M} \mathrm{o-K} \alpha$)	7.9 (M o-K α)	77.28 (Cu-K α)
Crystal size/mm	$0.40 \times 0.50 \times 0.60$	$0.20 \times 0.20 \times 0.57$	$0.20 \times 0.50 \times 0.63$	$0.13 \times 0.25 \times 0.25$	$0.25 \times 0.40 \times 0.50$
T/K	253	150	150	150	293
$\theta_{\text {min }}, \theta_{\text {max }} /{ }^{\circ}$	2.6, 75	1.5, 27.5	1.1, 27.5	1.2, 27.5	2.5, 75
λ / \AA	1.5418 (Cu-K α)	0.71073 (M o-K α)	0.71073 (M o-K α)	0.71073 (M o-K α)	1.5418 (Cu-K α)
Scan type	$\omega-2 \theta$	ω	ω	$\omega-2 \theta$	$\omega-2 \theta$
$\Delta \omega /{ }^{\circ}$	$1.2+0.15 \tan \theta$	$0.77+0.35 \tan \theta$	$1.00+0.35 \tan \theta$	$0.50+0.35 \tan \theta$	$1.2+0.15 \tan \theta$
L inear decay (\%)	N one	4	10	2	N one
R anges $\mathrm{h}, \mathrm{k}, \mathrm{l}$	$\begin{aligned} & -10 \text { to } 0,-11 \text { to } 10, \\ & -11 \text { to } 11 \end{aligned}$	$\begin{aligned} & -14 \text { to } 15,-16 \text { to } 17 \text {, } \\ & 0-18 \end{aligned}$	$\begin{aligned} & -16 \text { to } 11,0-48, \\ & -13 \text { to } 14 \end{aligned}$	$\begin{aligned} & -15 \text { to } 13,0-15, \\ & -23 \text { to } 23 \end{aligned}$	-10 to 10, 0-15, 0-20
Total data	2702	10137	14067	10470	3443
Total unique data	2702	97510	11715	9996	3443
Observed data	2516[I>2.5\%(I)]	7575[I>2\%(I)]	11 636[l > 2\%(l)]	6518[I>2\%(I)]	$3013[1>2.5 \sigma(1)]$
A bsorption correction range	-	$-$	$-$	$-$	0.79, 1.39
No. refined parameters	237	507	588	541	336
$\mathrm{R}^{\text {a }}$	0.077	0.0423	0.0722	0.0594	0.037
wR $2^{\text {b }}$		0.0930	0.1753	0.1120	
R'	0.093				0.059
G oodness of fit	-	1.02	1.06	0.98	-
$\mathrm{w}^{-1 \mathrm{~d}}$	$7.1+\mathrm{F}_{0}+0.0034 \mathrm{~F}_{0}{ }^{2}$	$\begin{aligned} & \sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+0.0403 \mathrm{P}^{2}+ \\ & 0.6873 \mathrm{P} \end{aligned}$	$\begin{aligned} & \sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+0.0410 \mathrm{P}^{2}+ \\ & 14.95 \mathrm{P} \end{aligned}$	$\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+0.0372 \mathrm{P}^{2}$	$8.7+F_{0}+0.0119{ }_{0}{ }^{2}$
$(\Delta / \sigma)_{\text {ave }}(\Delta / \sigma)_{\text {max }}$	-, 0.46	0.001, 0000	0.000, 0.000	0.001, 0.000	-, 0.16
M inimum, maximum residual electron/ density e \AA^{-3}	$-0.3,0.6$	-0.79, 1.02	-1.07, 0.90	-0.62, 0.82	-0.9, 0.79

$\mathrm{mmol})$, tcne ($0.061 \mathrm{~g}, 0.478 \mathrm{mmol}$) and $\mathrm{L}^{4}(0.277 \mathrm{~g}, 0.478$ $\mathrm{mmol})$. Yield of yellow powder: $0.234 \mathrm{~g}(0.283 \mathrm{mmol}, 65 \%)$. Crystals suitable for X -ray diffraction were grown by leading a gentle stream of N_{2} through a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. NMR $\left(\mathrm{CDCl}_{3}\right)$: ${ }^{1 \mathrm{H}}, \delta 2.17$ (br s, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.66(2 \mathrm{H}$, aryl), $7.16-7.37$ (22 H , aryl) and 7.67 (apparent br d, 2 H); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 6.26$. IR $\left(v_{\mathrm{CN}}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2219 \mathrm{~cm}^{-1}$. M.p. $>573 \mathrm{~K}$ (decomposes, darkens upon heating).
[PdL ${ }^{6}$ (tcne)] 5. The complex $\left[P d(d b a)_{2}\right](0.200 \mathrm{~g}, 0.348 \mathrm{mmol})$, tcne ($0.049 \mathrm{~g}, 0.383 \mathrm{~mol}$) and $\mathrm{L}^{6}(0.095 \mathrm{~g}, 0.383 \mathrm{mmol})$ were dissolved in toluene ($30 \mathrm{~cm}^{3}$). The reaction mixture was stirred for 1 h during which a yellow solution was formed. The solvent was concentrated to $3 \mathrm{~cm}^{3}$ after which cold ether ($30 \mathrm{~cm}^{3}$) was added. The suspension formed was decanted and washed with cold ether ($10 \mathrm{~cm}^{3}$). The product was dried in vacuo. Y ield of yellow powder: $0.151 \mathrm{~g}(0.31 \mathrm{mmol}, 90 \%)$. Crystals suitable for X -ray diffraction were grown by slow diffusion of pentane in a solution of the product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. NMR (CDCl_{3}): ${ }^{1 \mathrm{H}}, \delta 8.93$, $\left.\left.8.80\left[\mathrm{dd}, 2 \mathrm{H},{ }^{3}\right]=5.6,{ }^{4}\right]=1.4, \mathrm{H}(9), \mathrm{H}(14)\right], 7.94,7.87[\mathrm{dt}, 2 \mathrm{H}$, $\left.{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.5, \mathrm{H}(11), \mathrm{H}(16)\right], 7.55,7.52\left[\mathrm{dd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.6\right.$, H(12), H(17)], 7.40, 7.34 [dd, $2 \mathrm{H},{ }^{3}$ J $=6.8 \mathrm{~Hz}, \mathrm{H}(10), \mathrm{H}(15)$], $6.56\left[\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=5.5,3.2, \mathrm{H}(1)\right], 6.24\left[\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=5.5,2.5\right.$, $H(2)], 4.41\left[d, 1 H,{ }^{3}\right.$] $\left.=4.2, H(5)\right], 3.64[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(3)], 3.13$ [dd, $\left.1 \mathrm{H},{ }^{3} \mathrm{~J}=3.9, \mathrm{H}(4)\right], 3.48\left[\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=1.4 \mathrm{~Hz}, \mathrm{H}(6)\right], 1.90,1.94$ [m, $2 \mathrm{H}, \mathrm{H}(7)$]; ${ }^{13} \mathrm{C}(230 \mathrm{~K}), \delta 166.3,165.1$ [C (8), C (13)], 154.8, 151.9 [C (9), C(14)], 140.6, 139.3 [C(11), C(16)], 139.8, 136.7
[C(1), C(2)], 126.5, 124.4 [C(12), C(17)], 124.2, 122.4 [C(10), C(15)], 115.2, 114.6, 114.4, 114.1, ($C=N$), 54.6, 52.2, 46.9, 46.0 [C(3), C(6)], 47.1 [C(7)], 14.3, 14.0 ($C=C$). IR ($\left.v_{C N}, \mathrm{~K} \mathrm{Br}\right): 2224$ cm^{-1} (Found: C, 56.6; H, 3.2; $\mathrm{N}, 16.95$. Calc. for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{Pd}$: C, 57.2; H, 3.35; N, 17.4\%).

X-R ay crystallography

L^{6}. D ata were collected on an Enraf-N onius CA D-4 diffractometer (graphite monochromator) and $\omega-2 \theta$ scans. Crystal data and details of data collection and refinement are given in Table 7. U nit-cell parameters were refined by a least-squares fitting procedure using 23 reflections with $81<2 \theta<88^{\circ}$. Corrections for Lorentz-polarisation effects were applied. The structure was solved by direct methods. The hydrogen-atom positions were calculated. F ull-matrix least-squares refinement on F, anisotropic for the non-hydrogen atoms and isotropic for the hydrogen atoms, restraining the latter in such a way that the distance to their carrier remained constant at approximately $1.09 \AA$. The secondary isotropic extinction coefficient ${ }^{57,58}$ refined to $0.23(3)$. Scattering factors were taken from Cromer and M ann. ${ }^{59,60}$ All calculations were performed with XTAL, ${ }^{61}$ unless stated otherwise.

Complexes 1, 2 and 4. Crystals suitable for X-ray determination were mounted on a Lindemann-glass capillary and transferred into the cold nitrogen stream on an Enraf-N onius CAD4-T diffractometer with rotating anode (graphite mono-
chromator). A ccurate lattice parameters were determined by least-squares treatment, using the setting angles (SET4) of about 25 reflections. The unit-cell parameters were checked for the presence of higher lattice symmetry. ${ }^{61}$ D ata were corrected for Lorentz-polarisation effects and for a linear decay of the three periodically measured reference reflections. The structures of compounds $\mathbf{1}$ and $\mathbf{2}$ were solved by automated direct methods (SIR 92), ${ }^{63} 4$ by automated Patterson methods and subsequent Fourier-difference techniques (DIRDIF 29). ${ }^{64}$ Refinement on F^{2} was carried out by full-matrix least-squares techniques (SH ELXL 93). ${ }^{65} \mathrm{H}$ ydrogen atoms were included in the refinement in calculated positions riding on their carrier atoms. All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were refined with a fixed isotropic thermal parameter related to that of their carrier atom by a factor of 1.5 for the methyl hydrogen atoms and a factor of 1.2 for the others. Weights were optimised in the final refinement cycles. The unit cell of compound 1 contains one dichloromethane on an inversion centre for which no satisfactory disorder model could be refined. In a volume of $124 \AA^{3}$ an electron count of approximately 41 electrons was encountered and taken into the structure-factor calculation via back-Fourier transformation (PLATON /SQU E EZE). ${ }^{66,67} \mathrm{~N}$ eutral atom scattering factors and anomalous dispersion corrections were taken from ref. 68.

Complex 5. D ata were collected on an Enraf-N onius CAD-4 diffractometer (graphite monochromator) and $\omega-2 \theta$ scans. U nit-cell parameters were refined by a least-squares fitting procedure using 23 reflections with $80<2 \theta<86^{\circ}$. Corrections for Lorentz-polarisation effects were applied. The structure was solved and refined as for compound L^{6}. An empirical absorption correction (DIFABS ${ }^{69}$) was applied. The secondary isotropic extinction coefficient ${ }^{57,58}$ refined to $0.02(1)$. Scattering factors were taken from Cromer and M ann. ${ }^{59,60}$ The anomalous scattering of Pd was taken into account. All calculations were performed with XTAL, ${ }^{61}$ unless stated otherwise.

A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. C hem. Soc., D alton Trans., 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/477.

Acknowledgements

Dr. Petra Wehman is kindly acknowledged for stimulating discussions concerning palladium chemistry. We thank the Computational Chemistry List discussion group (http://ccl.osc.edu/ chemistry.html) for helpful suggestions concerning π stacking in M OPAC. J. G. P. D. is indebted to Shell Research B.V. for financial support. This work was supported in part (A. L. S. and N. V.) by the N etherlands Foundation of Chemical Research (SON) with financial aid from the Netherlands Organisation for Scientific Research (NWO).

R eferences

1 P. M. M aitlis, P. Espinet and M. J. H. Russell, in Comprehensive O rganometallic Chemistry, eds. G. Wilkinson, F. G. A. Stone and E. W. A bel, Pergamon, Oxford, 1982, vol. 6, p. 233.

2 P. M. Maitlis, The Organic Chemistry of Palladium, A cademic Press, N ew York, 1971, vol. 1, p. 106.
3 F. R. Hartley, in Comprehensive Organometallic Chemistry, eds G. Wilkinson, F. G. A. Stone and E. W. A bel, Pergamon, Oxford, 1982, vol. 6, p. 471.
4 J. E. Bäckvall, in Reactions of Coordinated Ligands, ed. P. S. Braterman, Plenum, N ew York, 1986, vol. 1, p. 679
5 C hemistry of the Platinum Group M etals, Recent D evelopments, ed. G. K. A nderson, Elsevier, A msterdam, 1991.

6 J. Tsuji, Organic Synthesis with Palladium Compounds, Springer, Berlin, 1980.

7 C. A. Tolman, Chem. Rev., 1977, 77, 313
8 C. G. Pierpont, R. M . Buchanan and H. H. D owns, J. Organomet. Chem., 1977, 124, 103
9 R. van A sselt, C. J. Elsevier, W. J. J. Smeets and A. L. Spek, Inorg. C hem., 1994, 33, 1521.
10 H. Werner, G. T. Crisp, P. W. Jolly, H.-J. K raus and C. K rüger, Organometallics, 1983, 2, 1369
11 V. V. Bashilov, P. V. Petrovskii, V. I. Sokolov, S. V. Lindeman, I. A. Guzey and Y. T. Struchkov, O rganometallics, 1993, 12, 991.

12 K. Okamoto, Y. K ai, N. Yasuoka and N. K asai, J. Organomet. C hem., 1974, 65, 427.
13 M. Hodgson, D. Parker, R. J. Taylor and G. Ferguson, J. Chem. Soc., C hem. Commun., 1987, 1309.
14 R. Benn, P. Betz, R. Goddard, P. W. Jolly, N. K okel, C. K rüger and I. Topalovic, Z . N aturforsch., Teil B, 1991, 46, 1395.

15 W. A. H ermann, W. R . Thiel, C. Broßmer, K . Öfele, T. Priermeier and W. Scherer, J. O rganomet. C hem., 1993, 461, 51.
16 P. H ofmann, H. H eiß and G. M üller, Z. N aturforsch., Teil B, 1987, 42, 395.
17 S. Sakaki and M. Ieki, Inorg. C hem., 1991, 30, 4218.
$18 \mathrm{~J} . \mathrm{Li}, \mathrm{G}$. Schreckenbach and T. Ziegler, Inorg. Chem., 1995, 34, 3245.

19 M . K ranenburg, Y. E. M . van der Burgt, P. C. J. K amer, P. W. N. M . van Leeuwen, K. G oubitz and J. F raanje, O rganometallics, 1995, 14, 3081.

20 U. Burkert and N. L. Allinger, M olecular M echanics, A merican Chemical Society, Washington, D.C., 1982
21 C. P. C asey and G. T. Whiteker, I sr. J. C hem., 1990, 30, 299.
22 C. P. Casey, G. T. W hiteker, M. G. M elville, L. M. Petrovich, J. J. A . Gavney and D. R. Powell, J. A m. Chem. Soc., 1992, 114, 5535.
23 M. K ranenburg, P. C. J. K amer, P. W. N. M . van Leeuwen, D. Vogt and W. K eim, J. Chem. Soc., Chem. Commun., 1995, 2177.
24 P. Wehman, H. M. A. van D ongen, A. Hagos, P. C. J. K amer and P. W. N. M . van L eeuwen, unpublished work.

25 J. M. Brown and P. J. Guiry, Inorg. Chim. A cta, 1994, 220, 249.
26 R. E. Rülke, P. W. N. M. van Leeuwen and K. Vrieze, unpublished work.
27 M. K ranenburg, P. C. J. K amer and P. W. N. M. van Leeuwen, unpublished work.
28 J. J. P. Stewart, M OPAC, Program 455, Quantum Chemistry Program Exchange, Indiana U niversity, IN, 1990.
29 M. J. S. Dewar, E. G. Zhoebisch, E. F. Healy and J. J. P. Stewart, J. A m. C hem. Soc., 1985, 107, 3902.

30 J. J. P. Stewart, J. C omput. Chem., 1989, 10, 209.
31 M. J. S. D ewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899.
32 A . Buhling, J. W. Elgersma, K. Goubitz, J. Fraanje, P. C. J. K amer and P. W. N. M . van Leeuwen, unpublished work.
33 O. A. D'yachenko, Y. A . Sokolova and L. O. A tovmyan, Z h. Strukt. K him., 1984, 25, 83.
34 C. A. H unter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5525.

35 M. D. Gordon, T. Fukunaga and H. E. Simmons, J. Am. Chem. Soc., 1976, 98, 8401.
36 T. Bally, Faraday Discuss. R. Soc. Chem., 1994, 90, 1799.
37 J. J. P. Stewart, personal communication
38 Y. K urita, C. Takayama and S. Tanaka, J. Comput. Chem., 1994, 15, 1013.

39 J. Perlstein, J. A m. C hem. Soc., 1994, 116, 11420.
40 M . J. S. Dewar and C. Jie, Theochem, 1989, 56, 1.
41 C. K. Johnson, ORTEP, Report OR NL-5138, Oak Ridge N ational L aboratory, Oak Ridge, TN, 1976.
42 S. D. Ittel and J. A . I bers, A dv. Organomet. Chem., 1976, 14, 33; K . S. Wheelock, J. H. N elson, L. C. Cusachs and H. B. Jonassen, J. A m. C hem. Soc. 1970, 92, 5110; J. H. N elson and H. B. Jonassen, C oord. Chem. Rev., 1971, 6, 27.
43 V. P. Zagorodnikov, S. B. K atser, M. N. Vargaftik, M. A. Porai-K oshits and I. I. M oiseev, J. C oord. Chem., 1989, 15, 1540.
44 R. A. K lein, R. van Belzen, C. J. Elsevier and K. Goubitz, unpublished work.
45 K. Tatsumi, R. Hoffmann, A. Yamamoto and J. K. Stille, Bull. Chem. Soc. J pn., 1981, 54, 1857.
46 P.-T. Cheng, C. D. Cook, C. H. K oo, S. C. N yburg and M. T. Shiomi, A cta C rystallogr., Sect. B, 1971, 27, 1904.
47 G. Bombieri, E. Forsellini, C. Panattoni, R. Graziani and G. Bandoli, J. Chem. Soc. A, 1970, 1313.

48 J. N. Francis, A. M cA dam and J. A. Ibers, J. Organomet. Chem., 1971, 29, 131.
49 P.-T. Cheng and S. C. N yburg, C an. J. C hem., 1972, 50, 912.
50 CA Che WorkSystem, version 3.7, CAChe Scientific Inc., B eaverton, OR, 1994.
51 M . J. S. D ewar and Y.-C. Y uan, Inorg. C hem., 1990, 29, 3881.
52 M . J. S. Dewar, O rganometallics, 1987, 6, 1486.

53 M . J. S. Dewar, M. L. M cK ee and H. S. R zepa, J. A m. Chem. Soc., 1978, 100, 3607.
54 M. J. S. Dewar, J. Friedheim, G. Grady, E. F. Healy and J. J. P. Stewart, O rganometallics, 1986, 5, 375.
55 M . J. S. Dewar and C. H. Reynolds, J. C omput. C hem., 1986, 7, 140.
56 M . F. Rettig and P. M . M aitlis, Inorg. Synth., 1977, 17, 134.
57 W. H. Zachariasen, A cta C rystallogr., Sect. A, 1967, 23, 558
58 A. C. Larson, in Crystallographic Computing, eds. F. R. A hmed, S. R. H all and C. P. H uber, M unksgaard, Copenhagen, 1969, p. 291.

59 D. T. Cromer and J. B. M ann, A cta C rystallogr., Sect. A, 1968, 24, 321.

60 International Tables for X-R ay Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, p. 55.
61 XTAL 3.2 R eference M anual, eds. S. R. H all, H. D. Flack and J. M . Stewart, U niversities of Western Australia, G eneva and M aryland, 1992.

62 A . L. Spek, J. A ppl. C rystallogr., 1988, 21, 578.

63 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. A ppl. C rystallogr., 1993, 26, 343.

64 P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. G arcía-G randa, R. O. G ould, J. M . M. Smits and C. Smykalla, The DIRDIF program system; Technical report of the Crystallography L aboratory, U niversity of N ijmegen, 1992.
65 G. M. Sheldrick, SH ELXL 93, Program for crystal structure refinement, U niversity of G öttingen, 1993.
66 A. L. Spek, A cta C rystallogr., Sect. A , 1990, 46, C 34.
67 A . L. Spek, ACA A bstr., 1994, 22, 66.
68 International Tables for Crystallography, ed. A. J. C. Wilson, K luwer, D ordrecht, 1992, vol. C.
69 N. Walker and D. Stuart, A cta C rystallogr., Sect. A, 1983, 39, 158.

